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ON STABILITY OF A PLANE-PARALLEL CONVECTIVE FLOW OF A BINARY MIXTURE* 

G. Z. GERSHUMI, E. M. ZHUKHOVITSKII and L. E. SOROKIN 

The problem of stability of the convective flow of a binary mixture in a plane 

verticallayer isconsideredin the same formulation as in /l/. Numerical and analy- 
tical methods are used for solving the spectral amplitude problem. The investiga- 
tion shows that in different domains of parameters instability depends on different 

mechanisms. It is shown that, unlike in /l/, in the region of thermal concentration 
destabilization the crisis of flow is due to long-wave perturbations. 

Stability of the convective flow of a binary mixture was investigated in /l/ without 

allowance for thermal diffusion in the presence of longitudinal thermally stable stratifica- 

tion. Existence of a substantial decrease of flow stability in the region of finite values 

of the stratification parameter, due to the heat concentration mechanism, was disclosed. 

However the flow data on flow destabilization are erroneous, as will be shown below. The 
layered convective flows of a mixture induced by thermal concentration instability were 

investigated in a number of publications (see the survey in /2/l. The thermal concentration 

instability mechanism of filtration of a mixture through a porous medium was studied in /3/. 

The stability of flow in a vertical layer was considered in /4/, with transverse temperature 

differences and the concentraticn difference at boundaries taken into account. 

1. Statement of the problem. A plane vertical layer of a binary mixture bounded 
by solid parallel walls at z = &z impermeable to the substance, at which different constant 

temperatures &@ are maintained, is considered. The vertical concentration gradient that 

corresponds to the potentially stable stratification in the fluid is specified. Under such 

conditions mechanical stability is possible, and flow is generated. We define the flow using 

the equations of mixture convection in the Boussinesq approximation, disregarding thermal 

diffusion and diffusion heat conduction. We introduce dimensionless variables using the 
following units: /z for distance, h2/v for time, g~,@h2/v for velocity, (3 for temperature, 

file/ BE for concentration, and pogfi,Oh for pressure. We have the following dimensionless 

equations and conditions at the layer boundaries, of the stream closure and of constancy 

of the vertical gradient of concentration: 

(1. 1) 

(1.2) 

where p is the convecticn addition to the hydrostatic pressure, C is the concentration of the 

light component, and T is the temperature, all measured from some /initial/ values, fil and t% 

are temperature and concentration density coefficients, y is aunitvectoronthe vertical z- 

axis upward, and the remaining symbols are of conventional form. 

Problem (l.l), (1.2) contains four dimensionless parameters: the Grashof number G 

determined by the transverse temperature difference, the concentration Rayleigh number Rd 
determined by the longitudinal gradient of concentration U, and the usual and the diffusion 

Prandtl numbers p and P,, respectively. 

The problem thus formulated has a stationary solution which defines the plane-parallel 

flow in a fairly long layer. The respective distributions of velocity, temperature, and con- 

centration are 
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We begin the investigation of linear stability of the stationary flow (1.3) by consider- 

ing the small plane normal perturbations 

($', T', C') = (w, 8, E) exp (-kt + ikz) (1.4) 

where $' is the stream function of the velocity field perturbation, 'P (z), 0 (5), E (I) are amp- 
litudes, k is the wave number, and h = h, +ih, is the perturbation decrement. Linearization 

of Eqs. (1.1) near the stationary solution (1.3) yields the system of amplitude equations 

with homogeneous boundary conditions 

--)L (cp" - Per) + ikG Iv, ((o" - k%p) - q,“‘pl = (q’v - 21&p” + k%p) + 0’ + E’ (1.5) 

- he + ikG (u&l - T,,‘cp) = +- (13” -k%) , - @ + ikG (u& - C/q) + $ ‘p’ = + (5” - k2E) 

5= +I, 'p = $ : 0, e = 0, 5' = 0 (1.6) 

Here and subsequently a prime denotes differentiation with respect to the transverse coordin- 

ate z. 

The spectral amplitude problem (1.51, (1.6) determines the eigenvalues which represent 

the characteristic decrements 1\. dependent on all parameters G,R,,P,P,,k and, also, the 

respective eigenfunctions which represent perturbation amplitudes. The stability limit for 

monotonic type perturbations defined by real h are obtained from the condition h =O, and 

the neutral mode ef oscillating perturbations from the condition a, = 0. 

2. Long-wave perturbations. By analogy with the results of stability investigations 

of convective filtration of a mixture in a vertical porous layer /3/, it can be expected that 

in the important range of parameter variation, the most dangerous will be the long-wave 

perturbations as k +O. To solve the boundary value problem (1.5), (1.6) in this limit case 

we use the method of the small parameter. 
Setting in (1.5) k = 0 we obtain the equation 

--hVw = 9*v + 8' + E', --hPe = en, -42,~ + R,cp’ = En (2.1) 

with boundary conditions (1.6). All perturbatlcns determined by this boundary value problem 

are damped, except the unique level (of the concentraticn type) in the spectrwn which is 

neutral 

a =o, up =e =o, ~=C~ILS~ (2.2) 
(below, normalization is carried out with const = 1). The perturbation that corresponds to 

that level may prove to be (and actually proves to be) increasing for small k inaparticular 

domain of parameters, since it is neutral when k = 0. For the investigation of stability with 

respect to such long-wave perturbation we represent the solution in the form of expansion in 
the small parameter k 

‘p = rplk + (pzkz + . . ., 0 = I&k -+ &h-2 + . , 5 = 1 + Elk + E2k2 + . . .; h = hlk + h,k* + . . . (2.3) 

In the first order with respect to k we have the system of equations 

'plIv _t el’ + gl’ = 0, el” = 0, El” - REAP,’ = --hlPd + ~GP~u~ (2.4) 
(since the boundary conditions for all orders coincide with (l-6), they will not, henceforth, 
be written out). The condition of solvability of the inhomogeneous system (2.4) is that 

al=o, and the solution is of the form 

NI = tg IL + ctg p -I- th p - cth p 

For second crder amplitudes we obtain the system 

'pl'v -(- 0,' _t &' = iG (v~'F~" - z'o"vl), I&” = -iGPT,‘cp,, &” - RdrgZ‘ = 1 + iG (I& - C,‘cp,) - a, (2.6) 
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whose solvability condition consists of the requirement that the integral in the right-hand 

side of the last equation must vanish. This determines the first nonvanishing term in the 

expansion of the decrement 

(2.7) 

(2.8) 

It is evident 

i.e. the long-wave 

from (2.7) that the decrement h in region G<G, is positive when k#O, 
perturbations die out when k is small. In region G> G, the decrement 

is negative when k is small, i.e. we have long-wave instability. The value of G, determined 
by formula (2.8) defines the stability limit with respect to long-wave perturbations. The 
critical parameter is determined by the product G,Pd which depends on the longitudinal strat- 

ification parameter p = (RJ4)'/4. Owing to the unwieldiness of the expression for functionF(p), 

it is not given here. The curve of F(p) is shown in Fig-l, where the considered instability 

mode appears to the right of asymptote p> pL* = 1.673, respectively Rd > Rd* = 31.3. 
The minimum stability of the stream corresponds to the stratification parameter pm _ 1.989, 

i.e. Rdm = 62.6, and the critical Grashof number is then G, = 196.12 / Pd. 

3. Numerical results. The boundary value problem (1.5), (1.6) was solved numerical- 

ly for finite wave numbers k. 

Three methods were used: that of Galerkin and those of Runge-Kutta w-ith step-by-step 

orthogonalization, and of differential runs. For the approximation of perturbation amplitud- 

es cf functions of stream and temperature we used the Galerkin method on the same bases as 

used in solving stability problems of homogeneous fluid flow /5/, which corresponds to pertur- 

bations in a stationary fluid. For approximating the amplitudes of concentration perturba- 

tions we used eigenfunctions, normalized in a specific way, of the boundary value problem 

E" _ k2E = --hP&, 5’ (+ 1) : 0 

The number of basis functions retained in expansions of cp, 8, and 5 was determined by 

the requirement for intrinsic convergence of the method it was, also, dependent on parameters 

of the problem. Numerical integration by the Runge-Kutta-Merson method with orthogonaliza- 

tion was carried out in conformity with the scheme described in /6/ in connection with problems 

of convective flow stability. Numerical integration of amplitude equations was carried out 

by the method of differential runs /7/. 

The spectrum of eigenvalues S, the stability limit, and parameters of critical perturba- 

tions were obtained from the solution. The Galerkin method was mainly used for obtaining an 

over-all picture cf the decrement spectrum, while the determinaticn of stability limits and 

of parameters of critical perturbations WJS in the main obtained using the two numerical 

methods mentioned above. All of these methods yielded concurrent results within the range of 

parameters considered here. 

Some of the results of calculations are shown in Figs. 2-5. The dependence of the 

lowest (with respect to k) critical Grashof number G, on the concentration Rayleigh number 

Rd for fixed P and Pd is shown in Fig.2 (the curves correspond to the following combina- 

tions of parameters: 1 for P = 6.7, Pd = 676.7,2 forP = 6.7, Pd = 100,3forP = 6.7, Pd = 30, and 4 

for P = 0.7, P,j = 1.3). 

0 4 

Fig.1 Fig.2 
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The flow in various regions of variation of the basic parameter Rd shows instability 
which is due to various mechanisms. AS an example, Let us consider the stability limit for 

P -2 6.7, Pd := 676.7 (a typical example of a fluid binary mixture, such as water solution of 
salt). At low Rd (0 < Rd < 13, shown by curve la the instability is of purely hydrodynamic 
nature, and in a homogeneous fluid (Rd := 0) is associated with the formation of stationary 
vortices at the interface of counterflows. The increase of the vertical concentration grad- 
ient has some stabilizing effect. Owing to the hydrodynamic nature of the crisis, the stabil- 
ity limit in that region weakly depends on P and Pd (sections of curves la -#a are the same 
within the accuracy of the diagram). 

In region 13 (Rd (30 (curve lb) the most dangerous is the wave mode. That mode is 
associated with increasing oscillatory perturbations of concentration, with two equivalent, 
from the point of view of wave stability, convection streams propagating up- and downward. 

For Rd> &*z 30 stability is of the thermal-concentration nature and substantially 
depends on the presence of vertical stratification of the mixture. In region RI* <& < Rdo 
(for the considered values of parameters RdO =399) this instability is associated with stat- 
ionary long-wave perturbations (k = 0, section of curve Ic) which are the most dangerous. 
Numerical val.ues of the critical Grashof number of long-wave instability fully coincide, for 
all Pand Pd , with those obtained in the asymptotic analysis in Sect.2, formula (2.8). 
These results show that the thermal concentration mode leads to considerable destabilization 
of the flow. This is particularly strongly evident at high Pd (liquid solutions); thus the 
critical Grashof number along curve 1 is by three orders lower than in the region of action 
of the hydrodynamic instability mechanism. 

For I& > R,,, where &, depends on P and P,, instability is still of the thermal 
concentration nature, but the perturbations with k# 0 (cellular structure of perturbations) 
are now the most dangerous. In that region the stability limit increases as Rd is increased 
(as shown by curve Id; the points on curves 1-3 indicate the limits of long-wave and cellular 
instability). For high Rd the basic flow (1.3) acquires the structure of open boundary layers 
near walls and virtually stationary main body. Existence in the latter of horizontal temper- 
ature and concentration gradients results in the compensation of respective density gradients. 
Thus at high Ild the problem of flow stability becomes the problem of stabilityof equilibrium 
of the vertical layer of mixture with longitudinal stratification. 

The analysis of this problem in /8/ showed that instability is related to the development 
of short-wave convection in the form of stratified flows, with the stability limit and the 
wave number Jc~ dependent on Rd 

3.72Rp 
f;, = ,P,_-p, , k,Z1‘03R~ 

Data computed for regions of high & are in good agreement with these formulas. 
The dependence of critical wave numbers k, of the most dangerous perturbations on R, is 

shown in Fig.3, where curves l-4 correspond to the same val.ues of parameters P and Pd as 
in Fig.2. The indices a, b, C, and d indicate the previously mentioned four instability 
regions, viz, the hydrodynamic, the ccncentration wave, the long-wave, and the cellular 
thermal concentration. 

Thevalueof R,,o atwhichthetransition fromthe long-wave (k, = 0) tocellular(k, J; Qinstab- 
ilitytakes place in the investigation regiOnOfparmeters P and Pdisdetermined, as shownbycalcu- 

lations,bytheratio PdIP = x/D = s. The dependence of RdO on s is shown in Fig.4. As 
shown by this dependence for P = 0.5 and Pd = 1.3 (gas mixture) the corresponding stability 

0 4 
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curve 4 in Fig.2 is determined throughout region Rd> Rd. by long-wave perturbations. 
An example of a set of curves of thermal concentration instability is shown in Fig.5 for 

P = 6.7, P, = 676.7, and various& (I for R, = 64, Zfor Rd = 419.4,3 for Rd = 1024, 4 for Rd = 2500). 
It illustrates the transition of perturbations from the long-wave to the cellular form as ~~ 

is increased. 
As mentioned above, the considered here problem was solved in /l/, where the stability 

limits were numerically determined using the Galerkin method with a basis different from the 

one used here. The stability limit was determined for 'P = 6.7 and P, = 676.7. The behavior of 

stability limits determined there for low and high Rdis in agreement with the data in Fig.2 

Lowering of the stability limit of thermal concentration origin was also established in /l/. 

However the results relevant to this most interesting region are erroneous. It should be 
noted, first of all, that the long-wave mode of thermal concentration instability was not 

disclosed in /l/, and the destabilization at finite Rd was attributed to cellular perturba- 

tions. There are also considerable quantitative discrepancies in the region of the minimum 

of curve G,(Rd). Thus for the indicated P and Pd the lowest value of G,=2.1 is reached, 

according to /l/ at Rd= 333, while formula (2.8) and the numerical results shown in Fig.2 

(curve Ic) yield G,=0.29 at Rd= 62.6. Note that the wave concentration instability mode 

was not disclosed in /l/. 
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